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Summary
An interesting research problem in our age of Big Data is that of determining provenance.

Granular evaluation of provenance of physical goods (e.g., tracking ingredients of a pharmaceuti-

cal or demonstrating authenticity of luxury goods) has often not been possible with today's items

that are produced and transported in complex, interorganizational, often internationally spanning

supply chains. Recent adoptions of the Internet of Things and blockchain technologies give

promise at better supply‐chain provenance. We are particularly interested in the blockchain, as

many favored use cases of blockchain are for provenance tracking. We are also interested in

applying ontologies, as there has been some work done on knowledge provenance, traceability,

and food provenance using ontologies. In this paper, we make a case for why ontologies can con-

tribute to blockchain design. To support this case, we analyze a traceability ontology and translate

some of its representations to smart contracts that execute a provenance trace and enforce

traceability constraints on the Ethereum blockchain platform.
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1 | INTRODUCTION

An interesting practical and theoretical problem in our age of Big Data

is that of determining source of information. One community of

researchers interested in addressing this problem is the ontological

engineering community, who are actively researching the development

of ontologies for knowledge provenance (Erickson, Sheehan, Bennett,

& McGuinness, 2016; Fox & Huang, 2005).

According to Merriam‐Webster (2016), provenance is “source or

origin; or, the history of ownership of a valued object or work of art

or literature.” The ontological engineering community's efforts at for-

mally representing and reasoning about the provenance of knowledge

on the World Wide Web can be considered tractable because data

required to ascertain provenance is in digital form—as data, metadata,

and timestamps, for example. Moreover, semantic Web technologies

facilitate the semantic and workflow modeling and inference required

for Web knowledge provenance. Arguably, provenance evaluation of

artifacts that do not have such a ready and openly accessible digital

footprint or facilitating technologies has not been as tractable a prob-

lem to address. Tracking the ingredients of a pharmaceutical or demon-

strating authenticity of a luxury handbag are some examples. Whereas
d. wileyonlinelib
it is true that UPS can accurately track its packages, such granular

provenance evaluation has often not been possible with today's items

that are produced and transported in complex, interorganizational,

often internationally spanning supply chains.

As of late, however, new technologies, namely the Internet of

Things (IoT) and blockchain technologies, promise to offer provenance

even in complex supply chains (Armstrong, 2016). Internet‐aware sen-

sors capture finely granular real‐time data about product and environ-

ment characteristics as well as location and timestamps throughout the

supply chain. So, lack of a digital footprint may no longer be an issue.

Furthermore, distributed, shared databases using blockchain technolo-

gies promise to offer highly secure and immutable access to supply

chain data. Blockchain databases are decentralized, so that provenance

can be evaluated even when no one party can claim ownership over all

supply‐chain data. Inasmuch as metadata and semantic Web technolo-

gies enabled ontologies to be applied for knowledge provenance, it is a

key premise of our research that IoT and the blockchain, in particular,

now can enable ontologies to be used for much improved supply‐chain

provenance. Armed with this premise, this paper details our efforts

toward developing an ontology‐based blockchain for supply‐chain

provenance.
Intell Sys Acc Fin Mgmt. 2018;25:18–27.rary.com/journal/isaf
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The paper is organized as follows. In Section 2, we expound the

blockchain, which constitutes the enabling technology for our work.

Excerpts of the TOVE Traceability Ontology, which serves as the

ontology source for our blockchain, are presented in Section 3.

Following this, Section 4 presents a proof‐of‐concept implementation

of a provenance evaluating blockchain executed on the Ethereum

application development platform and encoded in the Solidity lan-

guage. Finally, in Section 5 we present concluding remarks and com-

mentary for future work.
2 | THE BLOCKCHAIN

According to a technical definition, a blockchain is “a distributed

database that maintains a continuously‐growing list of data records

secured from tampering and revision. It consists of blocks, holding

batches of individual transactions. Each block contains a timestamp

and a link to a previous block” (Morris, 2016; Nakamoto, 2008;

Popper, 2016). This cryptographic technology “offers a way for

people who do not know or trust each other to create a record

of who owns what that will compel the assent of everyone con-

cerned. It is a way of making and preserving truths” (The

Economist Staff, 2015).

Originally developed to underpin the bitcoin cryptocurrency net-

work, the blockchain has many enthusiastic supporters who see its

potential beyond cash and currency (Boroujerdi & Wolf, 2015). The

potential for blockchain to enable a distributed ledger of digital

assets is the source of their enthusiasm (Tapscott & Tapscott,

2016: 7):
Some scholars have argued that the invention of double‐

entry bookkeeping enabled the rise of capitalism and the

nation‐state. This new digital ledger of economic

transactions can be programmed to record virtually

everything of value and importance to humankind: birth

and death certificates, marriage licenses, deeds and

titles of ownership, educational degrees, financial

accounts, medical procedures, insurance claims, votes,

provenance of food, and anything else that can be

expressed in code.
A more circumspect perspective on the potential for blockchain

views the following as “genuine” blockchain use cases: (1) interorgani-

zational recordkeeping; (2) lightweight financial systems, such as

crowdfunding, gift cards, and loyalty points; (3) multiparty aggregation

to address the infrastructure difficulty of combining information from

large number of sources; and (4) provenance tracking (Greenspan,

2016). As it is explicated by both this and Tapscotts’ perspectives, it

seems that provenance tracking along a supply chain could be one of

the killer apps of blockchain. Already, there are startups like prove-

nance.org and Skuchain that are exploring this possibility. We believe

that works from the computational ontology research community can

be useful for these startups and other researchers interested in this

topic. That is, specifically, we believe ontologies can contribute to

develop blockchain applications for supply‐chain provenance. In fact,
in general, we believe that ontologies can contribute to developing

blockchain applications.

2.1 | Why use ontologies for blockchain
development?

For the general case, recall this: blockchain is a distributed data-

base, one that is uniformly replicated across all nodes over, nearly

always, a cloud computing architecture. So, not all distributed data-

bases are consistent with a blockchain design. And blockchain is an

application that is consistent with, but only one of many, applica-

tions that uses a cloud computing architecture. In order to

understand data in a database distributed across numerous organi-

zations, there must be common interpretation of data across these

organizations. This interpretation can be informally enforced via use

of common data standards (i.e., models, dictionaries, and conven-

tions) and via business practices and processes that support adop-

tion of data standards by human developers working at these

organizations. Interpretation can also be formally enforced via for-

mal specifications that enable automated inference and verification

within software applications that execute on a network that spans

these organizations.

Concomitantly, the classic definition of a computational ontology

(Gruber, 1993) is that it is “an explicit specification of a conceptualiza-

tion.” In ontology‐based enterprise modeling, the conceptualization is

the set of ontologies required to ensure common interpretation of data

from one or more enterprises’ shared databases. Such ontologies can

be informal or lightweight (e.g., North American Industry Classification

System); formal, like TOVE Ontologies (Fox & Gruninger, 1998); or be

somewhere in between (i.e., semi‐formal). Making the reasonable

assumption that blockchain modeling is a specialized form of

interenterprise modeling, we make the case that ontology‐based

blockchain modeling will result in a blockchain with enhanced inter-

pretability. That is:

• A modeling approach based on informal or semi‐formal ontologies

can lead to better data standards, facilitate search and understand-

ing (especially in a supply‐chain context), and business practices

and processes for developing and operating a blockchain.

• A modeling approach based on formal ontologies can aid in the

formal specifications for automated inference and verification in

the operation of a blockchain.

It is this latter point that is particularly interesting, because that

description is very similar to the definition of smart contracts as

“pieces of software that represent a business arrangement and exe-

cute themselves automatically under pre‐determined circumstances”

(The Economist Staff, 2016). Smart contracts are critical for wide-

spread blockchain adoption. Arguably, the second and third largest

blockchain endeavors are Ethereum and R3CEV, with the first clearly

being bitcoin. Ethereum is a worldwide platform for implementing

distributed applications. It is run on a public, permission‐less

blockchain upon which smart contracts are executed. Ethers repre-

sent Ethereum's crypto‐currency paid to participants who maintain

the blockchain; there are USD 26.2 billion equivalent of ethers in

http://provenance.org
http://provenance.org
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circulation. R3CEV is a startup funded for USD 200 million by a

consortium of over 40 financial institutions worldwide. Its main focus

has been to develop smart contracts that access block‐chained

distributed ledgers of consortium institutions to, for example, auto-

matically execute terms of interest rate swaps between two banks

(Rizzo, 2016).

Given the importance placed on smart contracts, the following

modified statement outlines a very compelling rationale for ontology‐

based blockchains:

• A modeling approach based on formal ontologies can aid in the

formal specifications for automated inference and verification in

the operation of a blockchain. That is, a modeling approach based

on formal ontologies can aid in the development of smart contracts

that execute on the blockchain.

Now that we have a made a general case for developing ontology‐

based blockchains, we make the specific case: In the next section, we

outline theTOVE Traceability Ontology as an apt source for our ontol-

ogy‐based blockchain for supply‐chain provenance, and present

excerpts relevant to develop a proof‐of‐concept.
3 | TRACEABILITY‐ONTOLOGY‐BASED
BLOCKCHAIN FOR PROVENANCE

As mentioned, blockchain startups like provenance.org and Skuchain

are working on supply‐chain provenance. However, there do not

appear to be any studies other than our own effort at taking an

ontology‐based blockchain approach. There have been some related

studies: there are ontologies for supply chains (Frey, Woelk,

Stockheim, & Zimmermann, 2003; Grubic & Fan, 2010; Smirnov &

Chandra, 2000), though not for traceability; and traceability work on

the “Supply Chain of Things,” though not using ontologies (O’Leary,

2008; Ringsberg, 2011), and more interestingly, on configuring

blockchain architectures for supply chain (O’Leary, 2017). A

noteworthy effort develops the EAGLET ontology for ensuring data

interoperability between diverse IoT devices over a supply chain

(Geerts & O’Leary, 2014).

Even more expansive than this effort in terms of the focus on

traceability is the one (Kim, Fox, & Gruninger, 1995) that served as

a key part of TOVE ontologies for enterprise modeling (Fox &

Gruninger, 1998). EAGLET and REA (Gailly & Poels, 2007) ontol-

ogies, for example, are more modern and hence incorporate the

state of the art in ontology development literature. However, these

still do not have the breadth or formality of traceability concepts

found in the TOVE Ontology: the TOVE Traceability Ontology rep-

resents broad traceability concepts as built up from core enterprise

modeling constructs, is conceptually represented in first‐order logic,

and implemented in Prolog. TOVE's traceability work has garnered

interest, interestingly, from food sciences researchers (Dabbene,

Gay, & Tortia, 2014; Regattieri, Gamberi, & Manzini, 2007). Food

science has co‐opted what was an ontology biased toward

manufacturing industry enterprise modeling to ensure food safety

along the food supply chain. This bodes well for using the TOVE
Traceability Ontology as the primary source to design our

blockchain.
3.1 | TOVE traceability ontology excerpt

The key informal assumptions used in developing this ontology are as

follows:

• It must be possible to trace from one entity to another, where

neither the entities are abstracted entities.

• Traceable resource unit (TRU—a representation for a batch of a

something; e.g., a tru of 100 widgets) is the resource representa-

tion that must be traceable, since a tru is neither an abstracted

nor an aggregated entity.

• Primitive activity is the activity representation that must be trace-

able, since a primitive activity is neither an abstracted nor an

aggregated entity.

Figure 1 is a simplified version of the data model for the ontology

(Kim et al., 1995), and Figure 2 shows some of the key axioms of the

ontology expressed formally in first‐order logic (Kim, 1999).
4 | PROOF‐OF‐CONCEPT IMPLEMENTA-
TION OF ONTOLOGY‐BASED BLOCKCHAIN
FOR SUPPLY‐CHAIN PROVENANCE

In this section we describe how we interpret the traceability ontology

as a real‐time tracking system, capable of tracing the provenance of

TRUs back to any other TRUs in their provenance history or chain.

As suggested by Figure 3, blockchain technologies are built upon

Internet technologies, using a Web browser as a natural interface.

We used The Truffle framework by ConsenSys (https://consensys.

net/) to generate a JavaScript‐based (Web3 ABI) interface to interact

with the deployed smart contract, forming inputs, or predicates, into

the system to define the state of objects, as well as performing traces.

The state of the blockchain or distributed ledger in Ethereum

represents the state of all deployed programs, or contracts, in terms

of inputs, internal variables, and outputs (e.g., logs). All Ethereum

clients on the network can participate in maintaining the ledger by lis-

tening for, computing, verifying, and encoding transactions into blocks

(i.e., mining). Solidity is currently the main programming language on

the Ethereum platform, and it is purpose built for writing smart‐con-

tract‐style programs. Solidity is an object‐oriented language, in which

the Contract is the fundamental class for encapsulating programs

or smart contracts in Solidity. While the language and platform are rep-

resentationally Turing complete—they can be used to represent any

possible computation—in practice, computations within Contracts

are subject to constraints. These are in turn due to the economic

incentives used to reward the decentralized network of individuals

who carry out computations on the blockchain in order to determine

its next state, or block. That is, that all transactions have a cost that

has to be paid in ethers, Ethereum's native token‐based currency.

Data models such as Figure 1 used in ontology‐based enterprise

modeling and their subsequent implementation in object‐oriented

http://provenance.org
https://consensys.net
https://consensys.net


FIGURE 1 Simplified TOVE Traceability Ontology data model

FIGURE 2 Key axioms of the TOVE Traceability Ontology
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programming environments have been extensively explored in the lit-

erature (Evermann &Wand, 2005; Siricharoen, 2007). One such meth-

odology commonly used as an intermediary representation for

translating business processes into the language of object‐oriented

software engineering is UML (Eriksson & Penker, 2000).

Figure 4 is a pertinent diagram. As implied by Figure 4, the

only public interfaces are provided by the Trace class; therefore,

all user input affecting the contract state on the blockchain is

through the Trace class. All output communication from the

Contract is accomplished through the use of Events, which

are log data variables to the blockchain and in turn read by the

Ethereum client. Ensuring that constraints and relationships implied

by the axioms are applied to the system is analogous to maintain-

ing the so‐called class invariants within the system of objects

(Meyer, 1988).

Translating from formal ontology representations to Solidity

can be problematic due to Solidity's novelty and correspondingly

low maturity. Nevertheless, if ontologies are to be used program-

matically, Solidity's de facto position as the programming language

for Ethereum necessitates this difficult translation. Promisingly,

there has been some recent work on designing translation mecha-

nisms (Kim & Laskowski, 2017). Therefore, as shown in Figure 4,

the Trace object or class is represented as a Contract, and

the PrimitiveActivity and Tru are represented as struct

types, which are essentially classes without associated methods,

or functions bound to each object instance. PrimitiveActivity and

Tru could also be implemented as contracts. As noted in the list-

ings and UML diagram, Trace has several functions defined, which

encompass the behavior and constraints upon the encapsulated
types, PrimitiveActivity and Tru. The public functions com-

prise the public interface for the contract. The notion of a Prim-

itive Trace is thereby implemented as a public function or

method rather than an object or variable, which is a common

approach to implementing computed fields or variables bound to

objects (Meyer, 1988).

In this section we elucidate the functionality of the source

code for the smart contract that implements the functionality

described in Section 3. The full version is available for download

at https://github.com/professormarek/traceability. The gist of the

code is that we are able to record the scenario pictured in

Figure 5 to the Ethereum blockchain, and the smart contract imple-

mentation of the ontology axioms is used to generate the trace

shown in Figure 6.

In this section we describe how we adapted a simplified TOVE

ontology (Fox & Gruninger, 1998; Kim et al., 1995) and implement

the ontological enterprise model as a real‐time tracking system, capa-

ble of tracing the provenance of a TRU back to any previous TRU in

their provenance history or chain. Our simplified ontology includes

the following axioms:

Axiom 1. A TRU is produced only once.

Axiom 2. A TRU (resource) can only be consumed if it is available

(exists and is not consumed).

Axiom 3. A Primitive Activity consumes one TRU and produces one

TRU.

Axiom 4. A TRU is first known to exist at the time it is first consumed

or produced.

Axiom 5. Once consumed, a TRU cannot become unconsumed.
For ease of discussion the smart contract is broken up into coher-

ent code listing. Code Listings 1–8, when assembled in order, will yield

the entire Trace contract. Readers familiar with the JavaScript lan-

guage will immediately recognize many of the syntax features of

Solidity.

In code Listing 1, the Trace contract is declared, which will

serve as our main object and interface to the Blockchain Smart Con-

tract. The data contained within the Trace is also declared here.

https://github.com/professormarek/traceability


FIGURE 3 A system diagram depicting mediated user interaction with the blockchain application

FIGURE 4 A UML diagram depicting the object‐oriented design of the traceability data model, as implemented in Ethereum‐–Solidity

FIGURE 5 Trace scenario considered for proof‐of‐concept demonstration
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The data types Tru and PrimitiveActivity are declared (lines

2–16), as well as lookup tables (lines 17 and 18) that will permit

the Trace to look up and refer to instances of Tru and

PrimitiveActivity by their respective Id. The msgOrder vari-

able is there to compensate for asynchronous delivery of messages

to the user interface (implemented in JavaScript) by providing an

ordered index for each message delivered to the user. The construc-

tor function on lines 20–22 is automatically called when the contract

is first deployed, and it sets the message index to zero.
Listing 1 Definition of Trace, internal structures, data members, and

constructor

1 contract Trace{

2 struct Tru{

3 bool consumed;

4 bool used;

5 bool created;

6 uint id;



FIGURE 6 Screen output of a trace executed on the Ethereum blockchain

KIM AND LASKOWSKI 23
7 uint producedBy;

8 uint consumedBy;

9 }

10 struct PrimitiveActivity{

11 bool created;

12 string name;

13 uint id;

14 uint inputTruId;

15 uint outputTruId;

16}

17 mapping(uint => Tru) truLookup;

18 mapping(uint => PrimitiveActivity) activityLookup;

19 uint msgOrder;

20 function Trace(){

21 msgOrder = 0;

22 }

In Listing 2, several so‐called function modifiers are shown. Each

can be thought of as a check for valid preconditions before executing

any code. This is useful for enforcing the invariant of the class, as well

as implementing the specified axioms. If execution reaches the under-

score “_” character in the modifier (lines 5, 11, 17, 23, 29, and 35); exe-

cution continues with the next modifier applied to the function, or if all

modifiers have been passed, then execution continues with the first

line of the body of the function. Typically, the pattern is that if the con-

dition described by the modifier is not met, the throw statement will be

executed. The effect of throw, is that the execution of the transaction

halts immediately, and any changes resulting from that transaction are

rolled back (i.e., not recorded in the blockchain). Examples of modifiers
applied to functions are found in Listings 4–8; the modifiers applied are

listed following the function header (starting with line 2).

Listing 2 Function modifiers used to check preconditions before

executing contract methods

1 modifier nonZero(uint num){

2 if(num == 0){

3 throw;

4 }

5 _

6 }

7 modifier truDoesNotExist(uint id){

8 if(truLookup[id].created){

9 throw;

10 }

11 _

12 }

13 modifier truExists(uint id){

14 if(truLookup[id].created! = true){

15 throw;

16 }

17 _

18 }

19 modifier primitiveActivityDoesNotExist(uint id){

20 if(activityLookup[id].created){

21 throw;

22 }
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23 _

24 }

25 modifier primitiveActivityExists(uint id){

26 if(activityLookup[id].created! = true){

27 throw;

28 }

29 _

30 }

31 modifier truAvailable(uint id){

32 if(truLookup[id].consumed||truLookup[id].used){

33 throw;

34 }

35 _

36 }

Each Event found in Listing 3, is a signal or message that is logged

to the blockchain, as appropriate, when called from the functions in

Listings 4–8. The log is then read by the Geth client in Figure 3, and

ultimately communicated to the user through the Web browser

interface. The first argument to each is an index used to indicate the

order of messages, as the JavaScript‐based client receives them

asynchronously by design.

Listing 3 Events used to communicate state change to observers

outside of the blockchain

1 event TraceExists(uint msgOrder, uint from_tru, uint

to_tru);

2 eventTraceDoesNotExist(uintmsgOrder,uintfrom_tru,

uint to_tru);

3 eventActivityCreated(uintmsgOrder,uintactivityId,

string description, uint consumedTruId, uint

producedTruId);

4 event TruCreated(uint msgOrder, uint truId);

5 event TruConsumed(uint msgOrder, uint truId, uint

activityId, string activityName);

6 event TruProducedBy(uint msgOrder, uint currTru,

uint currActivity, string activityName);

7 event ActivityConsumes(uint msgOrder, uint

currActivity, string activityName, uint currTru);

The newTru function in Listing 4 is called whenever it is necessary

to initialize or create a new Tru. Notice that in Listing 4, the existence

of a Tru with the given Id is checked for by the modifier

truDoesNotExist on line 2 before the Tru is created, enforcing

Axiom 1, that a Tru can only be created once. The TruCreated event

on line 11 is used to notify the user that a new Tru has been added to

the system. This function is private to prevent users from violating

Axiom 4 by creating instances of Tru that have not yet been either

consumed or produced. This function is used to create a Tru that

has not been produced by any PrimitiveActivity in the system,

but is consumed by a PrimitiveActivity (see Listing 7, line 11).
Listing 4 Method or function for creating a new Tru

1 function newTru(uint id) private

2 truDoesNotExist(id)
3 nonZero(id)

4 {

5 truLookup[id].created = true;

6 truLookup[id].id = id;

7 truLookup[id].consumed = false;

8 truLookup[id].used = false;

9 truLookup[id].producedBy = 0;

10 truLookup[id].consumedBy = 0;

11 TruCreated(msgOrder++, id);

12 }

The newTru function in Listing 5 is used to create a Tru that is

produced by a newly instantiated PrimitiveActivity (see Listing 7,

line 16). As with the previous newTru function in Listing 4, the

newTru function in Listing 5 prevents users from violating Axioms 1

and 4 by applying the truDoesNotExistmodifier and being declared

private respectively.
Listing 5 Method or function for creating a new Tru that is produced

by a PrimitiveActivity

1 function newTru(uint id, uint activityId) private

2 truDoesNotExist(id)

3 nonZero(id)

4 primitiveActivityExists(activityId)

5 {

6 newTru(id);

7 truLookup[id].producedBy = activityId;

8 }

The consumeTru function in Listing 6 is used when creating a

new PrimitiveActivty in order to consume the requisite Tru as

implied by Axiom 3. The truAvailable modifier (line 3) is used to

enforce Axiom 2.
Listing 6 Method or function to consume a Tru when consumed by a

PrimitiveActivity.

1 function consumeTru(uint truId, uint activityId)

private

2 truExists(truId)

3 truAvailable(truId)

4 primitiveActivityExists(activityId)

5 {

6 truLookup[truId].consumed = true;

7 truLookup[truId].consumedBy = activityId;

8 TruConsumed(msgOrder++, truId, activityId,

activityLookup[activityId].name);

9}

Axiom 3 is enforced by the logic in the newPrimitiveActivity

function in Listing 7, as the modifiers require a created inputTru and

not‐yet‐created outputTru. This function will consume the

inputTru and produce the outputTru while instantiating a new

Primitive Activity with the specified Id.
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Listing 7 Method or function used to create a new PrimitiveActivity

1 function newPrimitiveActivity(string name, uint

id, uint inputTruId, uint outputTruId)

2 truAvailable(inputTruId)

3 truDoesNotExist(outputTruId)

4 primitiveActivityDoesNotExist(id)

5 nonZero(id)

6 {

7 activityLookup[id].name = name;

8 activityLookup[id].id = id;

9 activityLookup[id].created = true;

10 if(truLookup[inputTruId].created! = true){

11 newTru(inputTruId);

12 }

13 ActivityCreated(msgOrder++, id, name, inputTruId,

outputTruId);

14 consumeTru(inputTruId, id);

15 activityLookup[id].inputTruId = inputTruId;

16 newTru(outputTruId, id);

17 activityLookup[id].outputTruId = outputTruId;

18 }

The primitiveTrace function (Listing 8) implements the Primi-

tive Trace functionality as a function rather than an object or class. It

searches the trace history, where tru_begin represents a Tru that

has been produced as a result of a PrimitiveActivity consuming

tru_end at some point in the past. In effect, a primitiveTrace will

exist from tru_begin to tru_end if and only if tru_begin has

tru_end at some point in the history of tru_begin. To determine

whether a trace exists in the other direction, the arguments can be

interchanged.
Listing 8 Method or function called by the user to perform a Primitive

Trace

1 function primitiveTrace(uint tru_begin, uint

tru_end)

2 truExists(tru_begin)

3 truExists(tru_end)

4 {

5 uint currTru = tru_begin;

6 while(currTru!=tru_end && truLookup[currTru].

producedBy!=0){

7 uint currActivity = truLookup[currTru].

producedBy;

8 var activityName = activityLookup[currActivity].

name;

9 TruProducedBy(msgOrder++, currTru, currActivity,

activityName);

10 currTru = activityLookup[currActivity].

inputTruId;

11 activityName = activityLookup[currActivity].

name;

12 ActivityConsumes(msgOrder++, currActivity,
activityName, currTru);

13 }

14 if(currTru == tru_end){

15 TraceExists(msgOrder++, tru_begin, tru_end);

16 }

17 else

18 {

19 TraceDoesNotExist(msgOrder++,tru_begin, tru_

end);

20 }

21 } //end of function primitiveTrace

22 } //end of contract Trace

Axiom 5 is enforced by the fact that we see from Listings 1–8 that

there is no function that can be called externally in order to reset a

consumed Tru back to an unconsumed state, that thanks to encapsu-

lation there is no API functionally to permit the resetting of a con-

sumed Tru back to an unconsumed state.
5 | CONCLUDING REMARKS AND FUTURE
WORK

We identified evaluating provenance as an important and ongoing

business issue. Evaluating knowledge provenance has become more

possible as more and more of the data required to discover the source

of knowledge is recorded on the Web. Evaluating provenance of phys-

ical goods—or what we call supply chain provenance—has generally

been more difficult because so many goods are handled in complex,

international supply chains where granular tracking of physical charac-

teristics and product whereabouts has not been possible. That is, until

recently, when provenance evaluation has become more possible with

the advent of IoT and blockchain.

In particular, as blockchain technology evolves, as more business

models that leverage it are conceived, and as more researchers explore

still‐nascent research opportunities with its use, we believe that the

ontological engineering community can make a contribution to the

growth of blockchain. Even though ontologies can be used in applica-

tions more broad than just blockchain, this new technology represents

an interesting and potentially important application area for ontol-

ogies. We posit one specific and two general potential contributions

and present preliminary results in this paper as a proof of concept of

these contributions.

• Specifically, ontologies that represent fundamental concepts in

traceability can contribute domain knowledge to develop

blockchain applications for supply‐chain provenance. As a proof

of concept, we wrote source code on the Ethereum blockchain

and assessed that we could in fact program concepts from the

TOVE Traceability Ontology in a blockchain platform.

• Generally, a modeling approach based on informal or semi‐formal

ontologies can lead to better data standards, and business prac-

tices and processes for developing and operating a blockchain.

As a proof of concept, we analyzed excerpted assumptions and
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data models of the TOVE Traceability Ontology and used them to

develop the appropriate distributed ledger on the blockchain.

• Generally, a modeling approach based on formal ontologies can aid

in the development of smart contracts that execute on the

blockchain. As a proof of concept, we translated TOVE Traceabil-

ity Ontology axioms that were expressed in first‐order logic into

smart contracts that could execute a provenance trace and

enforce traceability constraints on the blockchain.

There is much more work to be done. Specifically, there are many

more traceability constructs—both informal data models and formal

axioms—that ought to be encoded to enhance blockchain provenance

capabilities. Generally, more research is needed to make the conver-

sion from ontology representations to blockchain code more system-

atic. That may entail more granularly outlining conversion steps,

developing custom APIs, or contributing to efforts to convert semantic

Web representations like OWL and RDF into blockchain‐compliant

representations.

Future work notwithstanding, we believe that we have already

made some contribution toward providing guidance for those wishing

to use ontologies to develop blockchain applications, and more specif-

ically for evaluating supply‐chain provenance.

ENDNOTES
1 According to coindesk.com, as of July 3, 2017. In contrast, there are USD
42.6 billion equivalent bitcoins in circulation.

2 https://www.cryptocoinsnews.com/report-blockchain-r3-seeks-200-
millionbackers/.

3 Figure 6 refers to “transactions completed.” This is an expression used in
the Solidity/Ethereum output generator to denote a processing step in
the environment, so it should not be confused with the ontology term,
activity.
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APPENDIX

PARTIAL LISTING OF THE TRACE
CONSTRUCT

The full version is available for download at https://github.com/

professormarek/traceability.

1 contract Trace{

2 struct Tru{

3 bool consumed;

4 bool used;

5 bool created;

6 uint id;

7 uint producedBy;

8 uint consumedBy;

9 }

10 struct PrimitiveActivity{

11 bool created;

12 string name;

13 uint id;

14 uint inputTruId;

15 uint outputTruId;

16 }

17 mapping(uint => Tru) truLookup;

18 mapping(uint=>PrimitiveActivity)activityLookup;

19 uint msgOrder;

20 function Trace(){

21 msgOrder = 0;

22 }

23 modifier nonZero(uint num){

24 if(num == 0){

25 throw;

26 }

27 _

28 }

29 modifier truDoesNotExist(uint id){

30 if(truLookup[id].created){
31 throw;

32 }

33 _

34 }

35 modifier truAvailable(uint id){

36 if(truLookup[id].consumed||truLookup[id].used){

37 throw;

38 }

39 _

40 }

41 modifier truExists(uint id){

42 if(truLookup[id].created! = true){

43 throw;

44 }

45 _

46 }

47 modifier primitiveActivityExists(uint id){

48 if(activityLookup[id].created! = true){

49 throw;

50 }

51 _

52 }

53 function newTru(uint id) private

54 truDoesNotExist(id)

55 nonZero(id)

56 {

57 truLookup[id].created = true;

58 truLookup[id].id = id;

59 truLookup[id].consumed = false;

60 truLookup[id].used = false;

61 truLookup[id].producedBy = 0;

62 truLookup[id].consumedBy = 0;

63 TruCreated(msgOrder++, id);

64 }

65 function newTru(uint id, uint activityId) private

66 truDoesNotExist(id)

67 nonZero(id)

68 primitiveActivityExists(activityId)

69 {

70 newTru(id);

71 truLookup[id].producedBy = activityId;

72 }

73 function consumeTru(uint truId, uint activityId)

private

74 truExists(truId)

75 truAvailable(truId)

76 primitiveActivityExists(activityId)

77 {

78 truLookup[truId].consumed = true;

79 truLookup[truId].consumedBy = activityId;

80 TruConsumed(msgOrder++, truId, activityId,

activityLookup[activityId].name);

81 }
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